If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-8x-8=0
a = 7; b = -8; c = -8;
Δ = b2-4ac
Δ = -82-4·7·(-8)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-12\sqrt{2}}{2*7}=\frac{8-12\sqrt{2}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+12\sqrt{2}}{2*7}=\frac{8+12\sqrt{2}}{14} $
| 16.5+9z=18.34+9.1z | | -.00002x^2+2.487x+2=0 | | 2/3x+9=7/3x-6 | | 7x^2-8x-8x=0 | | -.0002x^2+2.487x+2=0 | | 5x-10-3x=28 | | f(2)=0.25*2 | | -8(n+5)=-40-8n | | (7x+8)^2=9 | | -6/5t=3/10 | | x+(x*1,0483504)=22341862 | | -.0002x^2+4.487x+2=0 | | 0=2x^2+16 | | x+(x*1.0483504)=22341862 | | 4x-15=200 | | 13x-2=-5-4x | | x^2+50x-100=0 | | 4x=-6x+60-15-15x | | 39.99+0.45x=44.99+.40x | | 3x+2=4x=2 | | (1+r)^5=3 | | 3b-11-7b=10 | | 3(11x+6)=33x-8 | | x+(x*5)=150 | | 8/3=2n/9 | | -5+x+3=1 | | a+0.9=3 | | 4^(n+2)=32 | | -.0002x^2+.12x+2=0 | | 1/4x+8=3/8 | | 4x+9=8x-1 | | (X-8)(x-11)=70^2 |